skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Li, Yuke"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available July 20, 2026
  2. Free, publicly-accessible full text available June 8, 2026
  3. Benchmark and system parameters often have a significant impact on performance evaluation, which raises a long-lasting question about which settings we should use. This paper studies the feasibility and benefits of extensive evaluation. A full extensive evaluation, which tests all possible settings, is usually too expensive. This work investigates whether it is possible to sample a subset of the settings and, upon them, generate observations that match those from a full extensive evaluation. Towards this goal, we have explored the incremental sampling approach, which starts by measuring a small subset of random settings, builds a prediction model on these samples using the popular ANOVA approach, adds more samples if the model is not accurate enough, and terminates otherwise. To summarize our findings: 1) Enhancing a research prototype to support extensive evaluation mostly involves changing hard-coded configurations, which does not take much effort. 2) Some systems are highly predictable, which means that they can achieve accurate predictions with a low sampling rate, but some systems are less predictable. 3) We have not found a method that can consistently outperform random sampling + ANOVA. Based on these findings, we provide recommendations to improve artifact predictability and strategies for selecting parameter values during evaluation. 
    more » « less
  4. Embedded devices, constrained by limited memory and processors, require deep learning models to be tailored to their specifications. This research explores customized model architectures for classifying drainage crossing images. Building on the foundational ResNet-18, this paper aims to maximize prediction accuracy, reduce memory size, and minimize inference latency. Various configurations were systematically probed by leveraging hardware-aware neural architecture search, accumulating 1,717 experimental results over six benchmarking variants. The experimental data analysis, enhanced by nn-Meter, provided a comprehensive understanding of inference latency across four different predictors. Significantly, a Pareto front analysis with three objectives of accuracy, latency, and memory resulted in five non-dominated solutions. These standout models showcased efficiency while retaining accuracy, offering a compelling alternative to the conventional ResNet-18 when deployed in resource-constrained environments. The paper concludes by highlighting insights drawn from the results and suggesting avenues for future exploration. 
    more » « less